The ThermoAcoustic Tomography Inverse Problem

Xavier Bonnefond

Institut de Mathématiques de Toulouse

July 19, 2010

 \leftarrow \Box

 (IMT) The TAT INVERSE PROBLEM JULY 19, 2010 1 / 50

 \leftarrow \equiv \rightarrow

THE THERMOACOUSTIC TOMOGRAPHY

- [Experimental set-up](#page-6-0)
- **•** [Equations](#page-14-0)
- [Inverse problem for point detectors](#page-22-0)
- **·** [Inverse problem for lineic detectors](#page-26-0)

D-B.

THE THERMOACOUSTIC TOMOGRAPHY

- [Experimental set-up](#page-6-0)
- **•** [Equations](#page-14-0)
- [Inverse problem for point detectors](#page-22-0)
- [Inverse problem for lineic detectors](#page-26-0)
- SOME INVERSION FORMULAS
	- The filtered backprojection
	- **•** [Fourier-Bessel series expansion](#page-43-0)
	- **•** [Helmholtz equation](#page-48-0)

THE THERMOACOUSTIC TOMOGRAPHY

- [Experimental set-up](#page-6-0)
- **•** [Equations](#page-14-0)
- [Inverse problem for point detectors](#page-22-0)
- [Inverse problem for lineic detectors](#page-26-0)
- SOME INVERSION FORMULAS
	- The filtered backprojection
	- **•** [Fourier-Bessel series expansion](#page-43-0)
	- **•** [Helmholtz equation](#page-48-0)
- ³ [Variational approach](#page-64-0)
	- **•** [Fourier regularization](#page-65-0)
	- **•** [Regularization scheme](#page-66-0)
		- **•** [Regularizing data](#page-69-0)
		- **•** [Asymptotic behaviour of](#page-78-0) P_B

THE THERMOACOUSTIC TOMOGRAPHY

- [Experimental set-up](#page-6-0)
- **•** [Equations](#page-14-0)
- [Inverse problem for point detectors](#page-22-0)
- [Inverse problem for lineic detectors](#page-26-0)
- 2 SOME INVERSION FORMULAS
	- The filtered backprojection
	- **•** [Fourier-Bessel series expansion](#page-43-0)
	- **•** [Helmholtz equation](#page-48-0)
- ³ [Variational approach](#page-64-0)
	- **•** [Fourier regularization](#page-65-0)
	- **•** [Regularization scheme](#page-66-0)
		- **•** [Regularizing data](#page-69-0)
		- **•** [Asymptotic behaviour of](#page-78-0) P_B

- THE THERMOACOUSTIC TOMOGRAPHY
	- [Experimental set-up](#page-6-0)
	- **•** [Equations](#page-14-0)
	- [Inverse problem for point detectors](#page-22-0)
	- [Inverse problem for lineic detectors](#page-26-0)
	- SOME INVERSION FORMULAS
		- The filtered backprojection
		- **•** [Fourier-Bessel series expansion](#page-43-0)
		- [Helmholtz equation](#page-48-0)
- VARIATIONAL APPROACH
	- **•** [Fourier regularization](#page-65-0)
	- [Regularization scheme](#page-66-0)
		- **•** [Regularizing data](#page-69-0)
		- \bullet [Asymptotic behaviour of](#page-78-0) P_B

PLAN

THE THERMOACOUSTIC TOMOGRAPHY

[Experimental set-up](#page-6-0)

- **•** [Equations](#page-14-0)
- **•** [Inverse problem for point detectors](#page-22-0)
- **•** [Inverse problem for lineic detectors](#page-26-0)
- SOME INVERSION FORMULAS
	- The filtered backprojection
	- **•** [Fourier-Bessel series expansion](#page-43-0)
	- [Helmholtz equation](#page-48-0)
- VARIATIONAL APPROACH
	- **•** [Fourier regularization](#page-65-0)
	- [Regularization scheme](#page-66-0)
		- **•** [Regularizing data](#page-69-0)
		- \bullet [Asymptotic behaviour of](#page-78-0) P_B

Э×

イロト イ団ト イミト イミト ニヨー の女の

A body is exposed to a radio frequency electromagnetic pulse,

- A body is exposed to a radio frequency electromagnetic pulse,
- **•** Tissues heating causes expansion...

 \Rightarrow

- A body is exposed to a radio frequency electromagnetic pulse,
- **•** Tissues heating causes expansion...
- **...** which generates a pressure wave.

Biological observation

Cancerous tissues, by being more vascularised, absorb more electromagnetic energy.

 \Rightarrow The goal here is to reconstruct the absorptivity coefficients map, denoted by $\mu_{abs}(x)$, from the mesured acoustic wave.

つひひ

ADVANTAGES OF THE TTA

• Non invasive;

- Combine the contrast skills of electromagnetic with high resolutions allowed by ultrasound waves;
- Simple and (farely) cheap equipment;
- Nevertheless, weak penetration capacity.

set-up for "point" detectors

PLAN

THE THERMOACOUSTIC TOMOGRAPHY

• [Experimental set-up](#page-6-0)

• [Equations](#page-14-0)

- **•** [Inverse problem for point detectors](#page-22-0)
- **•** [Inverse problem for lineic detectors](#page-26-0)
- SOME INVERSION FORMULAS
	- The filtered backprojection
	- **•** [Fourier-Bessel series expansion](#page-43-0)
	- [Helmholtz equation](#page-48-0)
- VARIATIONAL APPROACH
	- **•** [Fourier regularization](#page-65-0)
	- **•** [Regularization scheme](#page-66-0)
		- **•** [Regularizing data](#page-69-0)
		- \bullet [Asymptotic behaviour of](#page-78-0) P_B

Э×

FLUIDS MECHANIC EQUATIONS

THE LINEARIZED CONTINUITY EQUATION

$$
\frac{\partial \rho(x,\hat{t})}{\partial \hat{t}} = -\rho_0 \nabla \cdot \mathbf{v}(x,\hat{t})
$$

is derived from the principle of conservation of mass if the particle velocity $v(x, \hat{t})$ is small and the mass density $\rho_{tot}(x, \hat{t}) = \rho_0 + \rho(x, \hat{t})$ is weakly varying, i.e. $|\rho(x, \hat{t})| \ll \rho_0$.

FLUIDS MECHANIC EQUATIONS

THE LINEARIZED CONTINUITY EQUATION

$$
\frac{\partial \rho(x,\hat{t})}{\partial \hat{t}} = -\rho_0 \nabla \cdot v(x,\hat{t})
$$

is derived from the principle of conservation of mass if the particle velocity $v(x, \hat{t})$ is small and the mass density $\rho_{tot}(x, \hat{t}) = \rho_0 + \rho(x, \hat{t})$ is weakly varying, i.e. $|\rho(x, \hat{t})| \ll \rho_0$.

THE LINEARIZED EULER EQUATION

$$
\rho_0 \frac{\partial v(x,\hat{t})}{\partial \hat{t}} = -\nabla p(x,\hat{t})
$$

is derived from the principle of conservation of momentum for a non-viscous, non-turbulent flow in the absence of external forces with slowly varying pressure $p_{tot}(x, \hat{t}) = p_0 + p(x, \hat{t})$, i.e. $|p(x, \hat{t})| \ll p_0$, within the fluid.

[Back to model improvement](#page-0-1)

Usual assumptions of the model

- The initial elecromagnetic pulse is considered to be a Dirac pulse,
- At time t_0 , every part of the body receives the same amount of energy,
- The speed of the wave is assumed to be constant (homogeneous media),
- The wave is not subject to any attenuation.

WAVE EQUATION

 \mid $\overline{}$ $\overline{}$ I $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ \mid

$$
\frac{\partial^2 p(x,t)}{\partial t^2} - \Delta p(x,t) = 0,
$$

\n
$$
p(x, 0) = u(x) := \frac{\mu_{abs}(x)\beta(x)J(x)v_s^2}{c_p(x)},
$$

\n
$$
\frac{\partial p(x,0)}{\partial t} = 0
$$

 \leftarrow \Box

 \geq $\,$ Ė.

WAVE EQUATION

 \mid I $\overline{}$ I I $\overline{}$ I $\overline{}$ I $\overline{}$ $\overline{}$

$$
\frac{\partial^2 p(x,t)}{\partial t^2} - \Delta p(x,t) = 0,
$$

\n
$$
p(x, 0) = u(x) := \frac{\mu_{abs}(x)\beta(x)J(x)v_s^2}{c_p(x)},
$$

\n
$$
\frac{\partial p(x,0)}{\partial t} = 0
$$

 \mathbf{p} ∍

 \leftarrow \Box

 $\leftarrow \Xi \rightarrow$

 $2Q$

WAVE EQUATION

 \mid I $\overline{}$ I I $\overline{}$ I $\overline{}$ I $\overline{}$ $\overline{}$

$$
\frac{\partial^2 p(x,t)}{\partial t^2} - \Delta p(x,t) = 0,
$$

\n
$$
p(x, 0) = u(x) := \frac{\mu_{\text{abs}}(x)\beta(x)J(x)v_s^2}{c_p(x)},
$$

\n
$$
\frac{\partial p(x,0)}{\partial t} = 0
$$

 \leftarrow \Box

 \geq $\,$ Ė.

WAVE EQUATION

 \mid I $\overline{}$ I I $\overline{}$ I $\overline{}$ I $\overline{}$ $\overline{}$

$$
\frac{\partial^2 p(x,t)}{\partial t^2} - \Delta p(x,t) = 0,
$$

\n
$$
p(x, 0) = u(x) := \frac{\mu_{abs}(x)\beta(x)J(x)v_s^2}{c_p(x)},
$$

\n
$$
\frac{\partial p(x,0)}{\partial t} = 0
$$

 \leftarrow \Box

 \geq $\,$ Ė.

PLAN

THE THERMOACOUSTIC TOMOGRAPHY

- [Experimental set-up](#page-6-0)
- **•** [Equations](#page-14-0)

• [Inverse problem for point detectors](#page-22-0)

- **•** [Inverse problem for lineic detectors](#page-26-0)
- SOME INVERSION FORMULAS
	- The filtered backprojection
	- **•** [Fourier-Bessel series expansion](#page-43-0)
	- [Helmholtz equation](#page-48-0)
- VARIATIONAL APPROACH
	- **•** [Fourier regularization](#page-65-0)
	- [Regularization scheme](#page-66-0)
		- **•** [Regularizing data](#page-69-0)
		- \bullet [Asymptotic behaviour of](#page-78-0) P_B

 \Rightarrow

REWRITING THE SOLUTION

The classical way to solve the wave equation suggests the use of integral geometry tools :

THEOREM

$$
p(x,t) = \frac{\partial}{\partial t} \left[\frac{R_s u(x,t)}{4\pi t} \right]
$$

where

$$
R_{\mathfrak{s}}u(x,t):=\int_{\partial B_t(x)}u(y)\,\mathrm{d}\mathcal{S}(y),\qquad (x,t)\in\mathbb{R}^3\times[0,\infty[.
$$

and a strong control of the con-

REWRITING THE SOLUTION

The classical way to solve the wave equation suggests the use of integral geometry tools :

THEOREM

$$
p(x,t) = \frac{\partial}{\partial t} \left[\frac{R_s u(x,t)}{4\pi t} \right]
$$

where

$$
R_{\mathfrak{s}}u(x,t):=\int_{\partial B_t(x)}u(y)\,\mathrm{d}\mathcal{S}(y),\qquad \ \, (x,t)\in\mathbb{R}^3\times[0,\infty[.
$$

The inverse formula introduces some linear transform of the initial data u PROPOSITION

$$
R_s u(x_{cent}, t) = 4\pi t \int_0^t p(x_{cent}, s) ds
$$

Inverse problem

THE SPHERICAL RADON TRANSFORM

$$
R_s u(x, t) := \int_{\partial B_t(x)} u(y) dS(y), \qquad (x, t) \in \mathbb{R}^3 \times [0, \infty[,
$$

with u supported in B .

PROBLEM

Can we reconstruct u , known to be with a compact support in B , from the knowledge of its integrals over spheres centered on the unit sphere, that is $R_s u$.

PLAN

THE THERMOACOUSTIC TOMOGRAPHY

- [Experimental set-up](#page-6-0)
- **•** [Equations](#page-14-0)
- **•** [Inverse problem for point detectors](#page-22-0)
- [Inverse problem for lineic detectors](#page-26-0)
- SOME INVERSION FORMULAS
	- The filtered backprojection
	- **•** [Fourier-Bessel series expansion](#page-43-0)
	- [Helmholtz equation](#page-48-0)
- VARIATIONAL APPROACH
	- **•** [Fourier regularization](#page-65-0)
	- [Regularization scheme](#page-66-0)
		- **•** [Regularizing data](#page-69-0)
		- \bullet [Asymptotic behaviour of](#page-78-0) P_B

 $\leftarrow \equiv +$

SET-UP FOR LINEIC DETECTORS

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → K Q Q @

THE 2-D WAVE EQUATION $(e_c = e_1)$

 $\overline{}$ $\overline{}$ I I $\overline{}$ I $\overline{}$ I $\overline{}$ I $\overline{}$ I ļ

DEFINITION

$$
\bar{u}(x') := \int_{\mathbb{R}} u(x_1, x') dx_1, \qquad x' \in \mathbb{R}^2,
$$
\n
$$
\bar{p}(x', t) := \int_{\mathbb{R}} p(x_1, x', t) dx_1, \qquad (x', t) \in \mathbb{R}^2 \times [0, \infty[,
$$
\n(2)

In this set-up, the mesured integrals appear to solve a 2-d wave equation : WAVE EQUATION

$$
\frac{\partial^2 \bar{p}(x',t)}{\partial t^2} - \Delta \bar{p}(x',t) = 0,
$$
\n
$$
\bar{p}(x',0) = \bar{u}(x'),
$$
\n
$$
\frac{\partial \bar{p}(x',0)}{\partial t} = 0
$$
\n(IMT)

\nThe TAT INVERSE Problem

\nJUIX 19, 2010 18 / 50

REWRITING THE SOLUTION

THEOREM

$$
\bar{p}(x'_{cent}, t) = \frac{1}{2\pi} \frac{\partial}{\partial t} \int_0^t \frac{R_c(\bar{u})(x'_{cent}, s)}{\sqrt{t^2 - s^2}} ds,
$$

where R_c is the 2d equivalent of R_s .

Here again we have an inversion formula allowing to work with the circular Radon transform

PROPOSITION

$$
R_c(\bar{u})(x'_{cent}, t) = 4t \int_0^t \frac{\bar{p}(x'_{cent}, t')}{\sqrt{t^2 - t'^2}} dt'
$$

Inverse problem

A TWO STEP PROBLEM

- Reconstruct \bar{u} , supported in the unit disc, from the knowledge of $R_c\bar{u}$ on the unit circle (inversion of the circular Radon transform).
- Reconstruct u from its projections \bar{u} , i.e. inversion of the classical Radon transform.

つひへ

Inverse problem

A TWO STEP PROBLEM

- Reconstruct \bar{u} , supported in the unit disc, from the knowledge of $R_c\bar{u}$ on the unit circle (inversion of the circular Radon transform).
- Reconstruct u from its projections \bar{u} , i.e. inversion of the classical Radon transform.

 \Rightarrow Even if the problem is originally designed in 3d, it makes sense to invert its 2d equivalent.

THE THERMOACOUSTIC TOMOGRAPHY

- [Experimental set-up](#page-6-0)
- **•** [Equations](#page-14-0)
- **.** [Inverse problem for point detectors](#page-22-0)
- **·** [Inverse problem for lineic detectors](#page-26-0)
- ² [Some inversion formulas](#page-32-0)
	- The filtered backprojection
	- **•** [Fourier-Bessel series expansion](#page-43-0)
	- **•** [Helmholtz equation](#page-48-0)

VARIATIONAL APPROACH

- **•** [Fourier regularization](#page-65-0)
- [Regularization scheme](#page-66-0)
	- **•** [Regularizing data](#page-69-0)
	- \bullet [Asymptotic behaviour of](#page-78-0) P_B

PLAN

- THE THERMOACOUSTIC TOMOGRAPHY
	- [Experimental set-up](#page-6-0)
	- **•** [Equations](#page-14-0)
	- **•** [Inverse problem for point detectors](#page-22-0)
	- **•** [Inverse problem for lineic detectors](#page-26-0)
- ² [Some inversion formulas](#page-32-0)
	- The filtered backprojection
	- **•** [Fourier-Bessel series expansion](#page-43-0)
	- [Helmholtz equation](#page-48-0)
- 3 VARIATIONAL APPROACH
	- **•** [Fourier regularization](#page-65-0)
	- [Regularization scheme](#page-66-0)
		- **•** [Regularizing data](#page-69-0)
		- \bullet [Asymptotic behaviour of](#page-78-0) P_B

 \Rightarrow

IDEA OF THE BACKPROJECTION

K ロ > K 레 > K 호 > K 호 > - 호 - Y Q Q Q

IDEA OF THE BACKPROJECTION

K ロ > K @ > K 홈 > K 홈 > H 홈 H YO Q Q
IDEA OF THE BACKPROJECTION

K ロ > K 레 > K 코 > K 코 > 「코 → ⊙ Q ⊙

IDEA OF THE BACKPROJECTION

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코 │ ◆ 9 Q ⊙ |

IDEA OF THE BACKPROJECTION

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코 │ ◆ 9 Q ⊙ |

SOME OPERATORS...

DEFINITION

$$
\begin{array}{ccc} \mathcal{N}\colon & \mathcal{C}_0^{\infty}(\mathcal{B}) & \longrightarrow & \tilde{\mathcal{C}}^{\infty} \\ & f(x) & \longmapsto & t^{n-2}R_s f(x,t) \\ \mathcal{D}\colon & \tilde{\mathcal{C}}^{\infty} & \longrightarrow & \tilde{\mathcal{C}}^{\infty} \\ & G(x,t) & \longmapsto & \left(\frac{1}{2t}\frac{\partial}{\partial t}\right)^{(n-3)/2} G(x,t) \end{array}.
$$

SOME OPERATORS...

DEFINITION

$$
\mathcal{N}: \begin{array}{ccc} C_0^{\infty}(\mathcal{B}) & \longrightarrow & \tilde{C}^{\infty} \\ f(x) & \longmapsto & t^{n-2}R_s f(x,t) \\ \mathcal{D}: & \tilde{C}^{\infty} & \longrightarrow & \tilde{C}^{\infty} \\ G(x,t) & \longmapsto & \left(\frac{1}{2t}\frac{\partial}{\partial t}\right)^{(n-3)/2} G(x,t) \end{array}
$$

PROPOSITION

$$
\mathcal{N}^*G(x) = \frac{1}{\omega} \int_{\mathcal{S}} \frac{G(\rho, |\rho - x|)}{|\rho - x|} d\mathcal{S}(\rho)
$$

et

$$
\mathcal{D}^*G(p,t) = (-1)^{(n-3)/2} t \mathcal{D}(G(p,t)/t).
$$

K ロ K K @ K K 평 K K 평 K

È.

Inversion formulas

THEOREM [PATCH, FINCH, RAKESH, 2004]

Let *n* be odd and greater than 2, f in $\mathcal{C}^{\infty}_{0}(\mathcal{B})$, and assume that $R_{s}f$ is known on $S \times \mathbb{R}_{+}$, then:

$$
f(x) = -\frac{\pi}{2\Gamma(n/2)^2} (\mathcal{N}^* \mathcal{D}^* \partial_t^2 t \mathcal{D} \mathcal{N} f)(x), \qquad x \in \mathcal{B},
$$

$$
f(x) = -\frac{\pi}{2\Gamma(n/2)^2} (\mathcal{N}^* \mathcal{D}^* \partial_t t \partial_t \mathcal{D} \mathcal{N} f)(x), \qquad x \in \mathcal{B},
$$

$$
f(x) = -\frac{\pi}{2\Gamma(n/2)^2} \Delta_x(\mathcal{N}^* \mathcal{D}^* t \mathcal{D} \mathcal{N} f)(x), \qquad x \in \mathcal{B},
$$

Comparison with the classical backprojection

· Spherical case :

$$
f(x) = -\frac{\pi}{2\Gamma(n/2)^2} \Delta_x(\mathcal{N}^* \mathcal{D}^* t \mathcal{D} \mathcal{N} f)(x),
$$

Classical :

$$
f(x) = \frac{(-1)^{(n-1)/2}}{2(2\pi)^{n-1}} \Delta_x^{(n-1)/2} (R^* Rf)(x).
$$

Question : should we expect the same instability ?

 \leftarrow \mathbb{R} is:

PLAN

- THE THERMOACOUSTIC TOMOGRAPHY
	- [Experimental set-up](#page-6-0)
	- **•** [Equations](#page-14-0)
	- **•** [Inverse problem for point detectors](#page-22-0)
	- **•** [Inverse problem for lineic detectors](#page-26-0)
- ² [Some inversion formulas](#page-32-0)
	- The filtered backprojection

• [Fourier-Bessel series expansion](#page-43-0)

- [Helmholtz equation](#page-48-0)
- VARIATIONAL APPROACH
	- **•** [Fourier regularization](#page-65-0)
	- **•** [Regularization scheme](#page-66-0)
		- **•** [Regularizing data](#page-69-0)
		- \bullet [Asymptotic behaviour of](#page-78-0) P_B

 \Rightarrow

POLAR COORDINATES, ILLUSTRATION

 299

Fourier-Bessel series expansion

Z $\mathcal{C}(\rho,\phi)$ $f(r, \theta) dC := g(\rho, \phi) = \sum_{r=0}^{\infty}$ n=−∞ ${\mathsf g}_{\mathsf n}(\rho) {\mathsf e}^{{\mathsf i}{\mathsf n}\phi},$

where

$$
g_n(\rho)=\frac{1}{2\pi}\int_0^{2\pi}g(\rho,\phi)e^{-in\phi}\,\mathrm{d}\phi;
$$

 \bullet

 \bullet

$$
f(r,\theta)=\sum_{n=-\infty}^{\infty}f_n(r)e^{in\theta},
$$

where

$$
f_n(r) = \frac{1}{2\pi} \int_0^{2\pi} f(r,\theta) e^{-in\theta} d\theta.
$$

メタメ メミメ メミメー 毛

RELATION BETWEEN COEFFICIENTS

NOTATIONS

- J_i stands for the i^{th} Bessel function of first kind.
- \mathcal{H}_n stands for the Hankel transform of n^{nt} kind, i.e. :

$$
\mathcal{H}_n\{p(r)\}_z:=\int_0^\infty p(r)J_n(rz)r\,\mathrm{d}r.
$$

PROPOSITION

$$
g_n(\rho)=2\pi \rho \mathcal{H}_0\{J_n(z)\mathcal{H}_n\{f_n(r)\}_z\}_\rho, \forall n\in\mathcal{Z}, \forall \rho\in\mathbb{R}_+,
$$

so that

$$
f_n(r) = \mathcal{H}_n \left\{ \frac{1}{J_n(z)} \mathcal{H}_0 \left\{ \frac{g_n(\rho)}{2\pi\rho} \right\}_z \right\}, \forall n \in \mathcal{Z}, \forall r \in \mathbb{R}_+.
$$

 \leftarrow \Box \leftarrow \leftarrow \Rightarrow \equiv QQ

RELATION BETWEEN COEFFICIENTS

NOTATIONS

- J_i stands for the i^{th} Bessel function of first kind.
- \mathcal{H}_n stands for the Hankel transform of n^{nt} kind, i.e. :

$$
\mathcal{H}_n\{p(r)\}_z:=\int_0^\infty p(r)J_n(rz)r\,\mathrm{d}r.
$$

PROPOSITION

$$
g_n(\rho)=2\pi \rho \mathcal{H}_0\{J_n(z)\mathcal{H}_n\{f_n(r)\}_z\}_\rho, \forall n\in\mathcal{Z}, \forall \rho\in\mathbb{R}_+,
$$

so that

$$
f_n(r) = \mathcal{H}_n \left\{ \frac{1}{J_n(z)} \mathcal{H}_0 \left\{ \frac{g_n(\rho)}{2\pi\rho} \right\}_z \right\}, \forall n \in \mathcal{Z}, \forall r \in \mathbb{R}_+.
$$

 \leftarrow \Box \leftarrow \leftarrow \Rightarrow \equiv QQ

PLAN

- THE THERMOACOUSTIC TOMOGRAPHY
	- [Experimental set-up](#page-6-0)
	- **•** [Equations](#page-14-0)
	- **•** [Inverse problem for point detectors](#page-22-0)
	- **•** [Inverse problem for lineic detectors](#page-26-0)

² [Some inversion formulas](#page-32-0)

- The filtered backprojection
- [Fourier-Bessel series expansion](#page-43-0)
- **•** [Helmholtz equation](#page-48-0)

VARIATIONAL APPROACH

- **•** [Fourier regularization](#page-65-0)
- [Regularization scheme](#page-66-0)
	- **•** [Regularizing data](#page-69-0)
	- \bullet [Asymptotic behaviour of](#page-78-0) P_B

 \Rightarrow

SOLUTIONS REPRESENTATION

Helmholtz equation

$$
\Delta u_m(x) + \lambda_m^2 u_m(x) = 0, \qquad x \in \mathcal{B}
$$

\n
$$
u_m(x) = 0, \qquad x \in \mathcal{S}
$$
\n(3)

and

$$
||u_m||_{L^2}=1
$$

REPRESENTATION

We denote by Φ_{λ_m} the Green functions, so:

$$
u_m(x)=\int_{\mathcal{S}}\Phi_{\lambda_m}(|x-z|)\frac{\partial}{\partial n}u_m(z)\,\mathrm{d}\mathcal{S}(z),\quad x\in\mathcal{B}.
$$

 \Rightarrow ă. QQQ

SERIES EXPANSION OF f KUNYANSKY, 2007

The eigen vectors ${u_m(x)}_0^\infty$ are an orthonormal basis of $L^2(\mathcal{B})$, so that t can be written :

$$
f \stackrel{L^2}{=} \sum_{0}^{\infty} \alpha_m u_m,
$$

where

$$
\alpha_m = \int_{\mathcal{B}} u_m(x) f(x) \, dx.
$$

If g stands for the spherical Radon transform of f :

$$
g(z,r)=\int_{\mathcal{S}}f(z+ry)r^{n-1} d\mathcal{S}(y), z\in\mathcal{S}, r\in\mathbb{R}_+.
$$

→ 重する 重

SERIES EXPANSION OF f KUNYANSKY, 2007

The eigen vectors ${u_m(x)}_0^\infty$ are an orthonormal basis of $L^2(\mathcal{B})$, so that t can be written :

$$
f \stackrel{\underline{L}^2}{=} \sum_0^\infty \alpha_m u_m,
$$

where

$$
\alpha_m = \int_{\mathcal{B}} u_m(x) f(x) \, dx.
$$

If g stands for the spherical Radon transform of f :

$$
g(z,r)=\int_{\mathcal{S}}f(z+ry)r^{n-1} d\mathcal{S}(y), \quad z\in\mathcal{S}, r\in\mathbb{R}_+.
$$

→ 重 → 一 重

COMPUTATION OF α_m

$$
\alpha_m = \int_B u_m(x) f(x) dx
$$

=
$$
\int_B \left(\int_S \Phi_{\lambda_m}(|x - z|) \frac{\partial}{\partial n} u_m(z) dS(z) \right) f(x) dx
$$

=
$$
\int_S \left(\int_B \Phi_{\lambda_m}(|x - z|) f(x) dx \right) \frac{\partial}{\partial n} u_m(z) dS(z)
$$

イロト イ団ト イミト イミト ニヨー の女の

COMPUTATION OF α_m

$$
\alpha_m = \int_B u_m(x) f(x) dx
$$

\n
$$
= \int_B \left(\int_S \Phi_{\lambda_m}(|x - z|) \frac{\partial}{\partial n} u_m(z) dS(z) \right) f(x) dx
$$

\n
$$
= \int_S \left(\underbrace{\int_S \Phi_{\lambda_m}(|x - z|) f(x) dx}_{I(z, \lambda_m)} \right) \frac{\partial}{\partial n} u_m(z) dS(z) \qquad (4)
$$

イロト イ団ト イミト イミト ニヨー の女の

$$
I(z,\lambda_m) = \int_{\mathcal{B}} \Phi_{\lambda_m}(|x-z|) f(x) dx
$$

$$
I(z, \lambda_m) = \int_{\mathcal{B}} \Phi_{\lambda_m}(|x - z|) f(x) dx
$$

=
$$
\int_{\mathbb{R}^n} \Phi_{\lambda_m}(|x - z|) f(x) dx,
$$

$$
I(z, \lambda_m) = \int_{\mathcal{B}} \Phi_{\lambda_m}(|x - z|) f(x) dx
$$

=
$$
\int_{\mathbb{R}^n} \Phi_{\lambda_m}(|x - z|) f(x) dx
$$

=
$$
\int_{\mathbb{R}^n} \Phi_{\lambda_m}(|x|) f(x + z) dx
$$

$$
I(z, \lambda_m) = \int_{\mathcal{B}} \Phi_{\lambda_m}(|x - z|) f(x) dx
$$

\n
$$
= \int_{\mathbb{R}^n} \Phi_{\lambda_m}(|x - z|) f(x) dx,
$$

\n
$$
= \int_{\mathbb{R}^n} \Phi_{\lambda_m}(|x|) f(x + z) dx
$$

\n
$$
= \int_{\mathbb{R}_+} \int_{\mathcal{S}} \Phi_{\lambda_m}(r) f(z + ry) r^{n-1} d\mathcal{S}(y) dr
$$

$$
I(z, \lambda_m) = \int_{\mathcal{B}} \Phi_{\lambda_m}(|x - z|) f(x) dx
$$

\n
$$
= \int_{\mathbb{R}^n} \Phi_{\lambda_m}(|x - z|) f(x) dx,
$$

\n
$$
= \int_{\mathbb{R}^n} \Phi_{\lambda_m}(|x|) f(x + z) dx
$$

\n
$$
= \int_{\mathbb{R}_+} \int_{\mathcal{S}} \Phi_{\lambda_m}(r) f(z + ry) r^{n-1} d\mathcal{S}(y) dr
$$

\n
$$
= \int_{\mathbb{R}_+} g(z, r) \Phi_{\lambda_m}(r) dr.
$$

$$
(\mathrm{IMT})
$$

Reconstruction of a function over a 2000000 , from 97000 mesurements :

重

Reconstruction of a function over a 2000000 , from 97000 mesurements :

Helmholtz equation, $\mathcal{O}(n^3 \log(n))$:

 $\mathcal{A} \oplus \mathcal{A} \rightarrow \mathcal{A} \oplus \mathcal{A} \rightarrow \mathcal{A}$

Reconstruction of a function over a 2000000 , from 97000 mesurements :

Helmholtz equation, $\mathcal{O}(n^3 \log(n))$: $→ 7$ seconds,

 $\leftarrow \equiv +$

Reconstruction of a function over a 2000000 , from 97000 mesurements :

Helmholtz equation, $\mathcal{O}(n^3 \log(n))$: $→ 7$ seconds,

Exact inversion, $\mathcal{O}(n^5)$:

 \rightarrow \equiv \rightarrow

Reconstruction of a function over a 2000000 , from 97000 mesurements :

Helmholtz equation, $\mathcal{O}(n^3 \log(n))$: $→ 7$ seconds,

Exact inversion, $\mathcal{O}(n^5)$: $→ 7 hours$

 $\leftarrow \equiv +$

TABLE OF CONTENTS

THE THERMOACOUSTIC TOMOGRAPHY

- [Experimental set-up](#page-6-0)
- **•** [Equations](#page-14-0)
- **•** [Inverse problem for point detectors](#page-22-0)
- **·** [Inverse problem for lineic detectors](#page-26-0)
- SOME INVERSION FORMULAS
	- The filtered backprojection
	- **[Fourier-Bessel series expansion](#page-43-0)**
	- [Helmholtz equation](#page-48-0)
- ³ [Variational approach](#page-64-0)
	- **•** [Fourier regularization](#page-65-0)
	- **•** [Regularization scheme](#page-66-0)
		- **•** [Regularizing data](#page-69-0)
		- **•** [Asymptotic behaviour of](#page-78-0) P_B

LLUSTRATIONS

PLAN

- THE THERMOACOUSTIC TOMOGRAPHY
	- [Experimental set-up](#page-6-0)
	- **•** [Equations](#page-14-0)
	- **•** [Inverse problem for point detectors](#page-22-0)
	- **•** [Inverse problem for lineic detectors](#page-26-0)
	- SOME INVERSION FORMULAS
		- The filtered backprojection
		- **•** [Fourier-Bessel series expansion](#page-43-0)
		- [Helmholtz equation](#page-48-0)
- ³ [Variational approach](#page-64-0)
	- **•** [Fourier regularization](#page-65-0)
	- [Regularization scheme](#page-66-0)
		- **•** [Regularizing data](#page-69-0)
		- \bullet [Asymptotic behaviour of](#page-78-0) P_B

 \Rightarrow

PLAN

- THE THERMOACOUSTIC TOMOGRAPHY
	- [Experimental set-up](#page-6-0)
	- **•** [Equations](#page-14-0)
	- **•** [Inverse problem for point detectors](#page-22-0)
	- **•** [Inverse problem for lineic detectors](#page-26-0)
	- SOME INVERSION FORMULAS
		- The filtered backprojection
		- [Fourier-Bessel series expansion](#page-43-0)
		- [Helmholtz equation](#page-48-0)
- ³ [Variational approach](#page-64-0)
	- **•** [Fourier regularization](#page-65-0)
	- **•** [Regularization scheme](#page-66-0)
		- **•** [Regularizing data](#page-69-0)
		- **•** [Asymptotic behaviour of](#page-78-0) P_B

LLUSTRATIONS

REGULARIZATION SCHEME

Assuming we want to solve $Rf=g$, and that $g\approx Rf_0$ with $f_0\in L^2(B)$:

- **Step 1:** Define the *object to be reconstructed* as $\phi_B * f_0$, where $(\phi_{\beta})_{\beta>0}$ is an approximation of unity.
- **Step 2** Replace the original data g by regularized data: $\Phi_{\beta}g$.
- Step 3 Finally, define the reconstructed object as the solution of the following optimization problem:

$$
(\mathcal{P}_{\beta}) \quad \begin{array}{c} \text{Minimize} \quad \frac{1}{2} \|\Phi_{\beta}g - Rf\|_{L^2(S \times \mathbb{R}_+)}^2 + \frac{\alpha}{2} \|(1-\hat{\phi}_{\beta})\hat{f}\|_{L^2(\mathbb{R}^d)}^2\\ \text{s.t.} \quad f \in L^2(B), \end{array}
$$

REGULARIZATION SCHEME

Assuming we want to solve $Rf=g$, and that $g\approx Rf_0$ with $f_0\in L^2(B)$:

- **Step 1:** Define the *object to be reconstructed* as $\phi_B * f_0$, where $(\phi_{\beta})_{\beta>0}$ is an approximation of unity.
- **Step 2** Replace the original data g by regularized data: $\Phi_{\beta}g$.
- Step 3 Finally, define the reconstructed object as the solution of the following optimization problem:

$$
(\mathcal{P}_{\beta}) \quad \begin{array}{c} \text{Minimize} \quad \frac{1}{2} \|\Phi_{\beta}g - Rf\|_{L^2(S \times \mathbb{R}_+)}^2 + \frac{\alpha}{2} \|(1-\hat{\phi}_{\beta})\hat{f}\|_{L^2(\mathbb{R}^d)}^2\\ \text{s.t.} \quad f \in L^2(B), \end{array}
$$

 \longrightarrow Here β is the relevant regularization parrameter.

DEFINITION OF A REGULARIZATION OPERATOR

C_{β} : $L^2(\mathbb{R}^d) \longrightarrow L^2(\mathbb{R}^d)$ $f \longrightarrow f * \phi_{\beta}$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

DEFINITION OF A REGULARIZATION OPERATOR

We investigate $\Phi_{\beta} \in L(L^2(S \times \mathbb{R}_+))$ such that:

$$
\Phi_{\beta}R = RC_{\beta}.
$$

If R is one-to-one, one gets easily:

$$
\Phi_{\beta} = R C_{\beta} R^{\dagger}.
$$

DEFINITION OF A REGULARIZATION OPERATOR

We investigate $\Phi_{\beta} \in L(L^2(S \times \mathbb{R}_+))$ such that:

$$
\Phi_{\beta}R = RC_{\beta}.
$$

If R is one-to-one, one gets easily:

$$
\Phi_{\beta} = R C_{\beta} R^{\dagger}.
$$

If not, we can define Φ_β as some solution of...
PROBLEM \mathcal{Q}_{β}

$$
(\mathcal{Q}_{\beta}) \quad \begin{array}{|l|l|} \hline \text{Minimize} & \frac{1}{2} \|R \mathcal{C}_{\beta} - X R\|^2 \\ \text{s.t.} & X \in L(L^2(S \times \mathbb{R}_+)), \ \ X = 0 \text{ on } \text{ ran } R^\perp. \end{array}
$$

- This is a convex problem;
- R is compact \Rightarrow level sets are not bounded.

4. 0. 6.

 $\leftarrow \Xi \rightarrow$

ă.

PROBLEM Q_{β}

$$
(\mathcal{Q}_{\beta}) \quad \left| \begin{array}{cl} \text{Minimize} & \frac{1}{2} \| R C_{\beta} - X R \|^2 \\ \text{s.t.} & X \in L(L^2(S \times \mathbb{R}_+)), \ X = 0 \text{ on } \text{ ran } R^\perp. \end{array} \right.
$$

- This is a convex problem;
- R is compact \Rightarrow level sets are not bounded.

Nevertheless, we have

PROPOSITION

If $RC_\beta R^\dagger$ is in $L(\mathcal{D}(R^\dagger), L^2(S \times \mathbb{R}_+)),$ then $RC_\beta R^\dagger$ is the restriction of some bounded operator defined on $L^2 (S \times \mathbb{R}_+)$ and solution of $(\mathcal{Q}_{\beta}).$ When R is injective, this solution is unique.

Brandfield

PROBLEM \mathcal{Q}_β in action

$$
(\mathcal{Q}_{\beta}) \quad \begin{array}{|l|l|} \hline \text{Minimize} & \frac{1}{2} \|RC_{\beta} - XR\|^2\\ \text{s.t.} & X \in L(L^2(S \times \mathbb{R}_+)), & X = 0 \text{ on } \text{ ran } R^{\perp}. \hline \end{array}
$$

The computation of a solution could be achieve thanks to a *proximal* point algorithm.

 \longrightarrow This noise-free problem would be well posed.

 \leftrightarrow But \mathcal{Q}_{β} is extremely huge !!

不重 的

\mathcal{Q}_{β} in finite dimension

$F = \mathbb{R}^n$ and $G = \mathbb{R}^m$, $m < n$ in \mathbb{N} $R \in \mathcal{M}_{m \times n}$ and $\Phi_{\beta} \in \mathcal{M}_{m}$

K ロ > K 個 > K 君 > K 君 > 「君」 の Q Q

\mathcal{Q}_{β} in finite dimension

$$
(\mathcal{Q}_{\beta}) \quad \begin{array}{|l|} \text{Minimize} & \mathcal{J}(RC_{\beta} - XR) \\ \text{s.t.} & X \in \mathcal{M}_m, \ X = 0 \text{ on } \text{ ran } R^{\perp}. \end{array}
$$

DEFINITION

The convex functional $\mathcal J$ is said to be $O(m) \times O(n)$ -invariant iff \forall $(U_m, U_n) \in O(m) \times O(n)$, $\mathcal{J}(U_m X U_n^t) = \mathcal{J}(X)$

\mathcal{Q}_{β} in finite dimension

$$
(\mathcal{Q}_{\beta}) \quad \begin{array}{|l|} \text{Minimize} & \mathcal{J}(RC_{\beta} - XR) \\ \text{s.t.} & X \in \mathcal{M}_m, \ X = 0 \text{ on } \text{ ran } R^{\perp}. \end{array}
$$

DEFINITION

The convex functional $\mathcal J$ is said to be $O(m) \times O(n)$ -invariant iff \forall $(U_m, U_n) \in O(m) \times O(n)$, $\mathcal{J}(U_m X U_n^t) = \mathcal{J}(X)$

PROPOSITION

If $\mathcal J$ is $O(m)\times O(n)$ -invariant, then $RC_\beta R^\dagger$ is solution of Problem Q_{β} .

 \rightarrow \equiv \rightarrow

Remember...

- THEOREM (MARÉCHAL et al)
	- I. Let $\alpha > 0$ and $\beta > 0$ fixed. Then Problem (\mathcal{P}_{β}) is well posed.

II. Assume

- $\hat{\phi}(\xi) \neq 1, \forall \xi \in \mathbb{R}^d \setminus \{0\};$
- $\exists K, s > 0, \, \vert 1 \hat{\phi}(\xi) \vert \sim_{\xi \rightarrow 0} K \Vert \xi \Vert^s$;

$$
\bullet \ \ g\in \mathcal{D}(\,{\mathcal T}_W^\dagger) \ \text{et} \ \ \widetilde{g} \,=\, U {\mathcal T}_{W}^\dagger g \ \ \in H^s(\mathbb{R}^d).
$$

Than f_{β} converge in the strong sense to ${\cal T}_{W}^{\dagger}{\cal B}$, in $L^2(B)$, as $\beta \downarrow 0$.

Remember...

- THEOREM (MARÉCHAL et al)
	- I. Let $\alpha > 0$ and $\beta > 0$ fixed. Then Problem (\mathcal{P}_{β}) is well posed.

II. Assume

- $\phi(\xi) \neq 1, \forall \xi \in \mathbb{R}^d \setminus \{0\};$
- $\exists K, s > 0, \, \vert 1 \hat{\phi}(\xi) \vert \sim_{\xi \rightarrow 0} K \Vert \xi \Vert^s$;
- $g\in\mathcal{D}(\mathcal{T}_W^\dagger)$ et $\tilde{g}=\textit{UT}_\mathcal{WB}^\dagger\textit{g}~\in\textit{H}^s(\mathbb{R}^d).$

Than f_{β} converge in the strong sense to ${\mathcal T}_{W}^{\dagger}{}_{\mathcal S}$, in $L^2(B)$, as $\beta \downarrow 0$.

Remember...

- THEOREM (MARÉCHAL et al)
	- I. Let $\alpha > 0$ and $\beta > 0$ fixed. Then Problem (\mathcal{P}_{β}) is well posed.
	- II. Assume
		- $\hat{\phi}(\xi) \neq 1, \forall \xi \in \mathbb{R}^d \setminus \{0\},\$
		- $\exists K, s > 0$, $|1 \hat{\phi}(\xi)| \sim_{\xi \rightarrow 0} K \|\xi\|^s$;
		- $g\in\mathcal{D}(R^\dagger)$ et $\ R^\dagger g\in H^s(B)$.

Than f_{β} converge in the strong sense to $\ R^\dagger g$, in $L^2(B)$, as $\beta \downarrow 0$.

不重 的人

 Ω

- $\hat{\phi}(\xi) \neq 1, \forall \xi \in \mathbb{R}^d \setminus \{0\};$
- $\exists K, s > 0, \; \vert 1 \hat{\phi}(\xi) \vert \sim_{\xi \rightarrow 0} K \Vert \xi \Vert^{s};$
- $g\in\mathcal{D}(R^\dagger)$ and $R^+g\in H^s(B).$

重き メラキー

G.

CHANGE OF FRAMEWORK

$$
\bullet \ \hat{\phi}(\xi) \neq 1, \ \forall \xi \in \mathbb{R}^d \setminus \{0\};
$$

$$
\bullet \ \exists K, s > 0, \ |1-\hat{\phi}(\xi)| \sim_{\xi \to 0} K \|\xi\|^s;
$$

•
$$
g \in \mathcal{D}(R^{\dagger})
$$
 and $R^+g \in H^s(B)$.

 Φ_β solution of

$$
Q_{\beta} \quad \begin{array}{|l|l|} \hline \text{Minimize} & \frac{1}{2} \| RC_{\beta} - XR\|_{L(H^s(B),L^2(S \times \mathbb{R}_+))}^2\\ \text{s.c.} & X \in L(G), \ X = 0 \text{ on } \tan R^{\perp}, \end{array}
$$

LEMMA

When β goes down to zero, C_β converges to the identity and Φ_β converges the identity on ran R . In other words :

$$
\|\Phi_{\beta}R - R\|_{L(H^s(B),L^2(S \times \mathbb{R}_+))} \underset{\beta \to 0}{\to} 0.
$$

$$
(\mathcal{P}_{\beta}) \quad \begin{array}{c} \text{Minimize} \quad \frac{1}{2} \|\Phi_{\beta}g - Rf\|_{L^2(S \times \mathbb{R}_+)}^2 + \frac{\alpha}{2} \|(1 - \hat{\phi}_{\beta})\hat{f}\|_{L^2(\mathbb{R}^d)}^2\\ \text{s.c.} \quad f \in L^2(B), \end{array}
$$

$$
(\mathcal{P}_{\beta}) \quad \begin{array}{c} \text{Minimize} \quad \frac{1}{2} \|\Phi_{\beta}g - Rf\|_{L^2(S \times \mathbb{R}_+)}^2 + \frac{\alpha}{2} \|(1 - \hat{\phi}_{\beta})\hat{f}\|_{L^2(\mathbb{R}^d)}^2\\ \text{s.c.} \quad f \in L^2(B), \end{array}
$$

$$
\downarrow\ \beta \to 0
$$

$$
\text{(P)} \quad \left| \begin{array}{cc} \text{Minimize} & \frac{1}{2} \Vert RR^{\dagger}g - Rf \Vert_{L^2(S \times \mathbb{R}_+)}^2 \\ \text{s.c.} & f \in L^2(B), \end{array} \right.
$$

$$
(\mathcal{P}_{\beta}) \quad \begin{array}{c} \text{Minimize} \quad \frac{1}{2} \|\Phi_{\beta}g - Rf\|_{L^2(S \times \mathbb{R}_+)}^2 + \frac{\alpha}{2} \|(1 - \hat{\phi}_{\beta})\hat{f}\|_{L^2(\mathbb{R}^d)}^2\\ \text{s.c.} \quad f \in L^2(B), \end{array}
$$

$$
\downarrow\ \beta \to 0
$$

$$
\text{(P)} \quad \left| \begin{array}{c} \text{Minimize} & \frac{1}{2} \|RR^{\dagger}g - RF\|_{L^2(S \times \mathbb{R}_+)}^2 \\ \text{s.c.} & f \in L^2(B), \end{array} \right.
$$

$$
(\mathcal{P}_{\beta}) \quad \begin{array}{|l|l|}\n\text{Minimize} & \frac{1}{2} \|\Phi_{\beta}g - Rf\|_{L^2(S \times \mathbb{R}_+)}^2 + \frac{\alpha}{2} \|(1 - \hat{\phi}_{\beta})\hat{f}\|_{L^2(\mathbb{R}^d)}^2 \\
\text{s.c.} & f \in L^2(B),\n\end{array}
$$

$$
\downarrow\ \beta\to 0
$$

$$
\text{(P)} \quad \left| \begin{array}{cc} \text{Minimize} & \frac{1}{2} \|g - Rf\|_{L^2(S \times \mathbb{R}_+)}^2 \\ \text{s.c.} & f \in L^2(B), \end{array} \right.
$$

Illustrations

TABLE OF CONTENTS

THE THERMOACOUSTIC TOMOGRAPHY

- [Experimental set-up](#page-6-0)
- **•** [Equations](#page-14-0)
- **•** [Inverse problem for point detectors](#page-22-0)
- **•** [Inverse problem for lineic detectors](#page-26-0)
- SOME INVERSION FORMULAS
	- The filtered backprojection
	- [Fourier-Bessel series expansion](#page-43-0)
	- [Helmholtz equation](#page-48-0)
- 3 VARIATIONAL APPROACH
	- **•** [Fourier regularization](#page-65-0)
	- [Regularization scheme](#page-66-0)
		- **•** [Regularizing data](#page-69-0)
		- \bullet [Asymptotic behaviour of](#page-78-0) P_B

LLUSTRATIONS

 $\leftarrow \equiv +$

Illustrations

ILLUSTRATIONS

ILLUSTRATIONS

ILLUSTRATIONS

How do we compute $RCR^{\dagger}g$

We compute $R^\dagger\boldsymbol{g}$ by means of a least square procedure :

重き メモメー 重

How do we compute $RCR^{\dagger}g$

We compute $R^\dagger\boldsymbol{g}$ by means of a least square procedure :

 $2Q$

Box 11

How do we compute $RCR^{\dagger}g$

We compute $R^\dagger\boldsymbol{g}$ by means of a least square procedure :

...and we apply RC to this nasty result.

THANK YOU

▶ 제품 ▶ 제품 ▶ 이 품이 90 Q @ THE TAT INVERSE PROBLEM JULY 19, 2010 $50/50$