# The ThermoAcoustic Tomography Inverse Problem

Xavier Bonnefond

Institut de Mathématiques de Toulouse

July 19, 2010





(IMT)

THE TAT INVERSE PROBLEM

3 ×

- **1** The ThermoAcoustic Tomography
  - Experimental set-up
  - Equations
  - Inverse problem for point detectors
  - Inverse problem for lineic detectors



E >

- D THE THERMOACOUSTIC TOMOGRAPHY
  - Experimental set-up
  - Equations
  - Inverse problem for point detectors
  - Inverse problem for lineic detectors
- 2 Some inversion formulas
  - The filtered backprojection
  - Fourier-Bessel series expansion
  - Helmholtz equation

- D THE THERMOACOUSTIC TOMOGRAPHY
  - Experimental set-up
  - Equations
  - Inverse problem for point detectors
  - Inverse problem for lineic detectors
- 2 Some inversion formulas
  - The filtered backprojection
  - Fourier-Bessel series expansion
  - Helmholtz equation
- 3 VARIATIONAL APPROACH
  - Fourier regularization
  - Regularization scheme
    - Regularizing data
    - Asymptotic behaviour of  $\mathcal{P}_{\beta}$

- D THE THERMOACOUSTIC TOMOGRAPHY
  - Experimental set-up
  - Equations
  - Inverse problem for point detectors
  - Inverse problem for lineic detectors
- 2 Some inversion formulas
  - The filtered backprojection
  - Fourier-Bessel series expansion
  - Helmholtz equation
- 3 VARIATIONAL APPROACH
  - Fourier regularization
  - Regularization scheme
    - Regularizing data
    - Asymptotic behaviour of  $\mathcal{P}_{eta}$



- D THE THERMOACOUSTIC TOMOGRAPHY
  - Experimental set-up
  - Equations
  - Inverse problem for point detectors
  - Inverse problem for lineic detectors
  - Some inversion formulas
    - The filtered backprojection
    - Fourier-Bessel series expansion
    - Helmholtz equation
- 3 VARIATIONAL APPROACH
  - Fourier regularization
  - Regularization scheme
    - Regularizing data
    - Asymptotic behaviour of  $\mathcal{P}_{\beta}$



(IMT)

## Plan

# THE THERMOACOUSTIC TOMOGRAPHY

#### Experimental set-up

- Equations
- Inverse problem for point detectors
- Inverse problem for lineic detectors
- Some inversion formulas
  - The filtered backprojection
  - Fourier-Bessel series expansion
  - Helmholtz equation
- 3 VARIATIONAL APPROACH
  - Fourier regularization
  - Regularization scheme
    - Regularizing data
    - Asymptotic behaviour of  $\mathcal{P}_{\beta}$



(IMT)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

 A body is exposed to a radio frequency electromagnetic pulse,





- A body is exposed to a radio frequency electromagnetic pulse,
- Tissues heating causes expansion...



(IMT)

3 ×

- A body is exposed to a radio frequency electromagnetic pulse,
- Tissues heating causes expansion...
- ...which generates a pressure wave.



3 ×

#### BIOLOGICAL OBSERVATION

Cancerous tissues, by being more vascularised, absorb more electromagnetic energy.

 $\Rightarrow$  The goal here is to reconstruct the absorptivity coefficients map, denoted by  $\mu_{abs}(x)$ , from the mesured acoustic wave.

# Advantages of the TTA

- Non invasive;
- Combine the contrast skills of electromagnetic with high resolutions allowed by ultrasound waves;
- Simple and (farely) cheap equipment;
- Nevertheless, weak penetration capacity.

## SET-UP FOR "POINT" DETECTORS



# PLAN

# THE THERMOACOUSTIC TOMOGRAPHY

Experimental set-up

#### Equations

- Inverse problem for point detectors
- Inverse problem for lineic detectors
- - The filtered backprojection
  - Fourier-Bessel series expansion
  - Helmholtz equation
- - Fourier regularization
  - Regularization scheme
    - Regularizing data
    - Asymptotic behaviour of  $\mathcal{P}_{\beta}$



(IMT)

### FLUIDS MECHANIC EQUATIONS

THE LINEARIZED CONTINUITY EQUATION

$$rac{\partial 
ho(x,\hat{t})}{\partial \hat{t}} = -
ho_0 
abla \cdot \mathbf{v}(x,\hat{t})$$

is derived from the principle of conservation of mass if the particle velocity  $v(x, \hat{t})$  is small and the mass density  $\rho_{tot}(x, \hat{t}) = \rho_0 + \rho(x, \hat{t})$  is weakly varying, i.e.  $|\rho(x, \hat{t})| \ll \rho_0$ .

# FLUIDS MECHANIC EQUATIONS

THE LINEARIZED CONTINUITY EQUATION

$$\frac{\partial \rho(x,\hat{t})}{\partial \hat{t}} = -\rho_0 \nabla \cdot v(x,\hat{t})$$

is derived from the principle of conservation of mass if the particle velocity  $v(x, \hat{t})$  is small and the mass density  $\rho_{tot}(x, \hat{t}) = \rho_0 + \rho(x, \hat{t})$  is weakly varying, i.e.  $|\rho(x, \hat{t})| \ll \rho_0$ .

THE LINEARIZED EULER EQUATION

$$ho_0 rac{\partial v(x,\hat{t})}{\partial \hat{t}} = - 
abla 
ho(x,\hat{t})$$

is derived from the principle of conservation of momentum for a non-viscous, non-turbulent flow in the absence of external forces with slowly varying pressure  $p_{tot}(x, \hat{t}) = p_0 + p(x, \hat{t})$ , i.e.  $|p(x, \hat{t})| \ll p_0$ , within the fluid.

Back to model improvement

(IMT)

JULY 19, 2010

#### USUAL ASSUMPTIONS OF THE MODEL

- The initial elecromagnetic pulse is considered to be a Dirac pulse,
- At time  $t_0$ , every part of the body receives the same amount of energy,
- The speed of the wave is assumed to be constant (homogeneous media),
- The wave is not subject to any attenuation.

#### WAVE EQUATION

$$\begin{aligned} \frac{\partial^2 p(x,t)}{\partial t^2} - \Delta p(x,t) &= 0, \\ p(x,0) &= u(x) := \frac{\mu_{abs}(x)\beta(x)J(x)v_s^2}{c_p(x)}, \\ \frac{\partial p(x,0)}{\partial t} &= 0 \end{aligned}$$

(IMT)

JULY 19, 2010

프 🖌 👘 프

#### WAVE EQUATION

$$\frac{\partial^2 p(x,t)}{\partial t^2} - \Delta p(x,t) = 0,$$
  

$$p(x,0) = u(x) := \frac{\mu_{abs}(x)\beta(x)J(x)v_s^2}{c_p(x)},$$
  

$$\frac{\partial p(x,0)}{\partial t} = 0$$

(IMT)

JULY 19, 2010

프 🖌 👘 프

#### WAVE EQUATION

$$\frac{\partial^2 p(x,t)}{\partial t^2} - \Delta p(x,t) = 0,$$
  

$$p(x,0) = u(x) := \frac{\mu_{abs}(x)\beta(x)J(x)v_s^2}{c_p(x)},$$
  

$$\frac{\partial p(x,0)}{\partial t} = 0$$

(IMT)

JULY 19, 2010

3.1

#### WAVE EQUATION

$$\begin{aligned} \frac{\partial^2 p(x,t)}{\partial t^2} - \Delta p(x,t) &= 0, \\ p(x,0) &= u(x) := \frac{\mu_{abs}(x)\beta(x)J(x)v_s^2}{c_p(x)}, \\ \frac{\partial p(x,0)}{\partial t} &= 0 \end{aligned}$$

(IMT)

JULY 19, 2010

프 🖌 👘 프

## Plan

# THE THERMOACOUSTIC TOMOGRAPHY

- Experimental set-up
- Equations

#### • Inverse problem for point detectors

- Inverse problem for lineic detectors
- Some inversion formulas
  - The filtered backprojection
  - Fourier-Bessel series expansion
  - Helmholtz equation
- 3 VARIATIONAL APPROACH
  - Fourier regularization
  - Regularization scheme
    - Regularizing data
    - Asymptotic behaviour of  $\mathcal{P}_{\beta}$



(IMT)

JULY 19, 2010

#### REWRITING THE SOLUTION

The classical way to solve the wave equation suggests the use of integral geometry tools :

THEOREM

$$p(x,t) = \frac{\partial}{\partial t} \left[ \frac{R_s u(x,t)}{4\pi t} \right]$$

where

$$R_{s}u(x,t) := \int_{\partial B_{t}(x)} u(y) d\mathcal{S}(y), \qquad (x,t) \in \mathbb{R}^{3} \times [0,\infty[.$$

| Τ. | ЪÆ  | T  |  |
|----|-----|----|--|
|    | IVI | ж. |  |
|    |     |    |  |

A 3 b

#### REWRITING THE SOLUTION

The classical way to solve the wave equation suggests the use of integral geometry tools :

THEOREM

$$p(x,t) = \frac{\partial}{\partial t} \left[ \frac{R_s u(x,t)}{4\pi t} \right]$$

where

$$R_{s}u(x,t) := \int_{\partial B_{t}(x)} u(y) d\mathcal{S}(y), \qquad (x,t) \in \mathbb{R}^{3} \times [0,\infty[.$$

The inverse formula introduces some linear transform of the initial data uPROPOSITION

$$R_s u(x_{cent}, t) = 4\pi t \int_0^t p(x_{cent}, s) \, \mathrm{d}s$$

(IMT)

JULY 19, 2010

#### INVERSE PROBLEM

#### The spherical Radon transform

$$R_{s}u(x,t) := \int_{\partial B_{t}(x)} u(y) \, \mathrm{d}\mathcal{S}(y), \qquad (x,t) \in \mathbb{R}^{3} \times [0,\infty[x])$$

with u supported in B.

#### Problem

Can we reconstruct u, known to be with a compact support in B, from the knowledge of its integrals over spheres centered on the unit sphere, that is  $R_s u$ .

▶ set-up

# Plan

# THE THERMOACOUSTIC TOMOGRAPHY

- Experimental set-up
- Equations
- Inverse problem for point detectors
- Inverse problem for lineic detectors
- Some inversion formulas
  - The filtered backprojection
  - Fourier-Bessel series expansion
  - Helmholtz equation
- 3 VARIATIONAL APPROACH
  - Fourier regularization
  - Regularization scheme
    - Regularizing data
    - Asymptotic behaviour of  $\mathcal{P}_{\beta}$



(IMT)

#### Set-up for lineic detectors



(IMT)

THE TAT INVERSE PROBLEM

JULY 19, 2010

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

# The 2-d wave equation $(e_c = e_1)$

#### DEFINITION

(IMT)

$$\bar{u}(x') := \int_{\mathbb{R}} u(x_1, x') \, dx_1, \qquad x' \in \mathbb{R}^2, \tag{1}$$
$$\bar{p}(x', t) := \int_{\mathbb{R}} p(x_1, x', t) \, dx_1, \qquad (x', t) \in \mathbb{R}^2 \times [0, \infty[, \qquad (2)$$

In this set-up, the mesured integrals appear to solve a 2-d wave equation :  $$\operatorname{Wave}\xspace$  Equation

$$\frac{\partial^2 \bar{p}(x',t)}{\partial t^2} - \Delta \bar{p}(x',t) = 0,$$
  
$$\bar{p}(x',0) = \bar{u}(x'),$$
  
$$\frac{\partial \bar{p}(x',0)}{\partial t} = 0$$
  
The TAT INVERSE PROBLEM JULY 19, 2010 18 / 5

#### REWRITING THE SOLUTION

Theorem

$$\bar{p}(x_{cent}',t) = \frac{1}{2\pi} \frac{\partial}{\partial t} \int_0^t \frac{R_c(\bar{u})(x_{cent}',s)}{\sqrt{t^2 - s^2}} \, \mathrm{d}s,$$

where  $R_c$  is the 2d equivalent of  $R_s$ .

Here again we have an inversion formula allowing to work with the circular Radon transform

PROPOSITION

$$R_{c}(\bar{u})(x'_{cent},t) = 4t \int_{0}^{t} \frac{\bar{p}(x'_{cent},t')}{\sqrt{t^{2}-t'^{2}}} dt'$$



#### INVERSE PROBLEM

#### A two step problem

- Reconstruct  $\bar{u}$ , supported in the unit disc, from the knowledge of  $R_c \bar{u}$  on the unit circle (inversion of the circular Radon transform).
- Reconstruct u from its projections  $\overline{u}$ , i.e. inversion of the classical Radon transform.

#### INVERSE PROBLEM

#### A two step problem

- Reconstruct  $\bar{u}$ , supported in the unit disc, from the knowledge of  $R_c \bar{u}$  on the unit circle (inversion of the circular Radon transform).
- Reconstruct u from its projections  $\overline{u}$ , i.e. inversion of the classical Radon transform.

 $\Rightarrow$  Even if the problem is originally designed in 3d, it makes sense to invert its 2d equivalent.

#### 1 The ThermoAcoustic Tomography

- Experimental set-up
- Equations
- Inverse problem for point detectors
- Inverse problem for lineic detectors
- 2 Some inversion formulas
  - The filtered backprojection
  - Fourier-Bessel series expansion
  - Helmholtz equation
  - VARIATIONAL APPROACH
    - Fourier regularization
    - Regularization scheme
      - Regularizing data
      - Asymptotic behaviour of  $\mathcal{P}_{\beta}$



(IMT)

# Plan

- 1 The ThermoAcoustic Tomography
  - Experimental set-up
  - Equations
  - Inverse problem for point detectors
  - Inverse problem for lineic detectors
- 2 Some inversion formulas
  - The filtered backprojection
  - Fourier-Bessel series expansion
  - Helmholtz equation
  - 3 VARIATIONAL APPROACH
    - Fourier regularization
    - Regularization scheme
      - Regularizing data
      - Asymptotic behaviour of  $\mathcal{P}_{\beta}$



(IMT)

JULY 19, 2010

### IDEA OF THE BACKPROJECTION



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

### IDEA OF THE BACKPROJECTION



◆□▶ ◆□▶ ◆注▶ ◆注▶ 注: のへで
# IDEA OF THE BACKPROJECTION



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣�?

# IDEA OF THE BACKPROJECTION



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣�?

# IDEA OF THE BACKPROJECTION



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣�?

Some operators...

#### DEFINITION

$$\begin{array}{ccccc} \mathcal{N} \colon & \mathcal{C}_{0}^{\infty}(\mathcal{B}) & \longrightarrow & \tilde{C}^{\infty} \\ & & f(x) & \longmapsto & t^{n-2}R_{s}f(x,t) \end{array} \\ \mathcal{D} \colon & \tilde{C}^{\infty} & \longrightarrow & \tilde{C}^{\infty} \\ & & G(x,t) & \longmapsto & \left(\frac{1}{2t}\frac{\partial}{\partial t}\right)^{(n-3)/2}G(x,t) \end{array} .$$

(IMT)

E nar

Some operators...

#### DEFINITION

$$\begin{array}{rcccc} \mathcal{N} \colon & \mathcal{C}_{0}^{\infty}(\mathcal{B}) & \longrightarrow & \tilde{C}^{\infty} \\ & & f(x) & \longmapsto & t^{n-2}R_{s}f(x,t) \end{array} \\ \mathcal{D} \colon & \tilde{C}^{\infty} & \longrightarrow & \tilde{C}^{\infty} \\ & & G(x,t) & \longmapsto & \left(\frac{1}{2t}\frac{\partial}{\partial t}\right)^{(n-3)/2}G(x,t) \end{array} .$$

PROPOSITION

$$\mathcal{N}^*G(x) = \frac{1}{\omega} \int_{\mathcal{S}} \frac{G(p, |p-x|)}{|p-x|} \, \mathrm{d}\mathcal{S}(p)$$

et

$$\mathcal{D}^*\mathcal{G}(\rho,t)=(-1)^{(n-3)/2}t\mathcal{D}(\mathcal{G}(\rho,t)/t).$$

(IMT)

THE TAT INVERSE PROBLEM

JULY 19, 2010

æ

24 / 50

・ロト ・四ト ・ヨト ・ヨト

# INVERSION FORMULAS

## THEOREM [ PATCH, FINCH, RAKESH, 2004 ]

Let *n* be odd and greater than 2, *f* in  $C_0^{\infty}(\mathcal{B})$ , and assume that  $R_s f$  is known on  $\mathcal{S} \times \mathbb{R}_+$ , then:

$$f(x) = -\frac{\pi}{2\Gamma(n/2)^2} (\mathcal{N}^* \mathcal{D}^* \partial_t^2 t \mathcal{D} \mathcal{N} f)(x), \qquad x \in \mathcal{B},$$

$$f(x) = -\frac{\pi}{2\Gamma(n/2)^2} (\mathcal{N}^* \mathcal{D}^* \partial_t t \partial_t \mathcal{D} \mathcal{N} f)(x), \qquad x \in \mathcal{B}$$

$$f(x) = -\frac{\pi}{2\Gamma(n/2)^2}\Delta_x(\mathcal{N}^*\mathcal{D}^*t\mathcal{D}\mathcal{N}f)(x), \qquad x\in\mathcal{B},$$

(IMT)

25 / 50

# COMPARISON WITH THE CLASSICAL BACKPROJECTION

• Spherical case :

$$f(x) = -\frac{\pi}{2\Gamma(n/2)^2} \Delta_x(\mathcal{N}^*\mathcal{D}^*t\mathcal{D}\mathcal{N}f)(x),$$

$$f(x) = \frac{(-1)^{(n-1)/2}}{2(2\pi)^{n-1}} \Delta_x^{(n-1)/2} (R^* R f)(x).$$

Question : should we expect the same instability ?

# PLAN

- - Experimental set-up
  - Equations
  - Inverse problem for point detectors
  - Inverse problem for lineic detectors
- 2 Some inversion formulas
  - The filtered backprojection
  - Fourier-Bessel series expansion
  - Helmholtz equation
  - - Fourier regularization
    - Regularization scheme
      - Regularizing data
      - Asymptotic behaviour of  $\mathcal{P}_{\beta}$



(IMT)

# POLAR COORDINATES, ILLUSTRATION



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

# FOURIER-BESSEL SERIES EXPANSION

 $\int_{\mathcal{C}(\rho,\phi)} f(r,\theta) \, \mathrm{d}\mathcal{C} := g(\rho,\phi) = \sum_{n=-\infty}^{\infty} g_n(\rho) e^{in\phi},$ 

where

$$g_n(\rho) = rac{1}{2\pi} \int_0^{2\pi} g(\rho,\phi) e^{-in\phi} \,\mathrm{d}\phi;$$

۲

$$f(r,\theta)=\sum_{n=-\infty}^{\infty}f_n(r)e^{in\theta},$$

where

$$f_n(r) = rac{1}{2\pi} \int_0^{2\pi} f(r,\theta) e^{-in\theta} \,\mathrm{d}\theta.$$

(IMT)

JULY 19, 2010

# RELATION BETWEEN COEFFICIENTS

#### NOTATIONS

- J<sub>i</sub> stands for the i<sup>th</sup> Bessel function of first kind.
- $\mathcal{H}_n$  stands for the Hankel transform of  $n^{nt}$  kind, i.e. :

$$\mathcal{H}_n\{p(r)\}_z := \int_0^\infty p(r) J_n(rz) r \,\mathrm{d}r.$$

#### PROPOSITION

$$g_n(\rho) = 2\pi\rho\mathcal{H}_0\{J_n(z)\mathcal{H}_n\{f_n(r)\}_z\}_\rho, \forall n \in \mathcal{Z}, \forall \rho \in \mathbb{R}_+, \forall n \in \mathcal{Z}, \forall \rho \in \mathbb{R}_+\}$$

so that

$$f_n(r) = \mathcal{H}_n\left\{\frac{1}{J_n(z)}\mathcal{H}_0\left\{\frac{g_n(\rho)}{2\pi\rho}\right\}_z\right\}_r, \forall n \in \mathcal{Z}, \forall r \in \mathbb{R}_+.$$

• • • • •

4 ∃ →

э

# RELATION BETWEEN COEFFICIENTS

#### NOTATIONS

- J<sub>i</sub> stands for the i<sup>th</sup> Bessel function of first kind.
- $\mathcal{H}_n$  stands for the Hankel transform of  $n^{nt}$  kind, i.e. :

$$\mathcal{H}_n\{p(r)\}_z := \int_0^\infty p(r) J_n(rz) r \,\mathrm{d}r.$$

#### PROPOSITION

$$g_n(\rho) = 2\pi\rho\mathcal{H}_0\{J_n(z)\mathcal{H}_n\{f_n(r)\}_z\}_\rho, \forall n \in \mathcal{Z}, \forall \rho \in \mathbb{R}_+, \forall n \in \mathcal{Z}, \forall \rho \in \mathbb{R}_+\}$$

so that

$$f_n(r) = \mathcal{H}_n\left\{\frac{1}{J_n(z)}\mathcal{H}_0\left\{\frac{g_n(\rho)}{2\pi\rho}\right\}_z\right\}_r, \forall n \in \mathcal{Z}, \forall r \in \mathbb{R}_+.$$

• • • • •

4 ∃ →

э

# Plan

- 1 The ThermoAcoustic Tomography
  - Experimental set-up
  - Equations
  - Inverse problem for point detectors
  - Inverse problem for lineic detectors

# 2 Some inversion formulas

- The filtered backprojection
- Fourier-Bessel series expansion
- Helmholtz equation

# VARIATIONAL APPROACH

- Fourier regularization
- Regularization scheme
  - Regularizing data
  - Asymptotic behaviour of  $\mathcal{P}_{\beta}$

# ILLUSTRATIONS

(IMT)

JULY 19, 2010

31 / 50

# SOLUTIONS REPRESENTATION

### HELMHOLTZ EQUATION

$$\Delta u_m(x) + \lambda_m^2 u_m(x) = 0, \qquad x \in \mathcal{B}$$
$$u_m(x) = 0, \qquad x \in \mathcal{S}$$

and

$$||u_m||_{L^2} = 1$$

#### REPRESENTATION

We denote by  $\Phi_{\lambda_m}$  the Green functions, so :

$$u_m(x) = \int_{\mathcal{S}} \Phi_{\lambda_m}(|x-z|) \frac{\partial}{\partial n} u_m(z) \, \mathrm{d}\mathcal{S}(z), \quad x \in \mathcal{B}.$$

э

32 / 50

(3)

# SERIES EXPANSION OF f [KUNYANSKY, 2007]

The eigen vectors  $\{u_m(x)\}_0^\infty$  are an orthonormal basis of  $L^2(\mathcal{B})$ , so that f can be written :

$$f \stackrel{L^2}{=} \sum_{0}^{\infty} \alpha_m u_m,$$

where

$$\alpha_m = \int_{\mathcal{B}} u_m(x) f(x) \, \mathrm{d}x.$$

If g stands for the spherical Radon transform of f :

$$g(z,r) = \int_{\mathcal{S}} f(z+ry)r^{n-1} d\mathcal{S}(y), \quad z \in \mathcal{S}, r \in \mathbb{R}_+.$$

# SERIES EXPANSION OF f [KUNYANSKY, 2007]

The eigen vectors  $\{u_m(x)\}_0^\infty$  are an orthonormal basis of  $L^2(\mathcal{B})$ , so that f can be written :

$$f \stackrel{L^2}{=} \sum_{0}^{\infty} \alpha_m u_m,$$

where

$$\alpha_m = \int_{\mathcal{B}} u_m(x) f(x) \, \mathrm{d}x.$$

If g stands for the spherical Radon transform of f :

$$g(z,r) = \int_{\mathcal{S}} f(z+ry)r^{n-1} d\mathcal{S}(y), \quad z \in \mathcal{S}, r \in \mathbb{R}_+.$$

#### Helmholtz

# Computation of $\alpha_m$

$$\alpha_{m} = \int_{\mathcal{B}} u_{m}(x) f(x) dx$$
  
= 
$$\int_{\mathcal{B}} \left( \int_{\mathcal{S}} \Phi_{\lambda_{m}}(|x-z|) \frac{\partial}{\partial n} u_{m}(z) d\mathcal{S}(z) \right) f(x) dx$$
  
= 
$$\int_{\mathcal{S}} \left( \int_{\mathcal{B}} \Phi_{\lambda_{m}}(|x-z|) f(x) dx \right) \frac{\partial}{\partial n} u_{m}(z) d\mathcal{S}(z)$$

(IMT)

THE TAT INVERSE PROBLEM

JULY 19, 2010

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

34 / 50

# Computation of $\alpha_m$

$$\alpha_{m} = \int_{\mathcal{B}} u_{m}(x)f(x) dx$$

$$= \int_{\mathcal{B}} \left( \int_{\mathcal{S}} \Phi_{\lambda_{m}}(|x-z|) \frac{\partial}{\partial n} u_{m}(z) d\mathcal{S}(z) \right) f(x) dx$$

$$= \int_{\mathcal{S}} \left( \underbrace{\int_{\mathcal{B}} \Phi_{\lambda_{m}}(|x-z|)f(x) dx}_{I(z, \lambda_{m})} \right) \frac{\partial}{\partial n} u_{m}(z) d\mathcal{S}(z)$$
(4)

JULY 19, 2010

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

34 / 50

$$I(z, \lambda_m) = \int_{\mathcal{B}} \Phi_{\lambda_m}(|x-z|) f(x) dx$$



(ロ) (四) (三) (三) (三) (三) (○)

$$\begin{split} l(z,\lambda_m) &= \int_{\mathcal{B}} \Phi_{\lambda_m}(|x-z|) f(x) \, \mathrm{d}x \\ &= \int_{\mathbb{R}^n} \Phi_{\lambda_m}(|x-z|) f(x) \, \mathrm{d}x, \end{split}$$



$$I(z, \lambda_m) = \int_{\mathcal{B}} \Phi_{\lambda_m}(|x - z|) f(x) dx$$
  
= 
$$\int_{\mathbb{R}^n} \Phi_{\lambda_m}(|x - z|) f(x) dx,$$
  
= 
$$\int_{\mathbb{R}^n} \Phi_{\lambda_m}(|x|) f(x + z) dx$$

(IMT)

THE TAT INVERSE PROBLEM

JULY 19, 2010

(ロ) (四) (三) (三) (三) (三) (○)

35 / 50

$$\begin{split} l(z,\lambda_m) &= \int_{\mathcal{B}} \Phi_{\lambda_m}(|x-z|)f(x)\,\mathrm{d}x\\ &= \int_{\mathbb{R}^n} \Phi_{\lambda_m}(|x-z|)f(x)\,\mathrm{d}x,\\ &= \int_{\mathbb{R}^n} \Phi_{\lambda_m}(|x|)f(x+z)\,\mathrm{d}x\\ &= \int_{\mathbb{R}_+} \int_{\mathcal{S}} \Phi_{\lambda_m}(r)f(z+ry)r^{n-1}\,\mathrm{d}\mathcal{S}(y)\,\mathrm{d}r \end{split}$$

(IMT)

JULY 19, 2010

$$I(z, \lambda_m) = \int_{\mathcal{B}} \Phi_{\lambda_m}(|x - z|) f(x) dx$$
  
= 
$$\int_{\mathbb{R}^n} \Phi_{\lambda_m}(|x - z|) f(x) dx,$$
  
= 
$$\int_{\mathbb{R}^n} \Phi_{\lambda_m}(|x|) f(x + z) dx$$
  
= 
$$\int_{\mathbb{R}_+} \int_{\mathcal{S}} \Phi_{\lambda_m}(r) f(z + ry) r^{n-1} d\mathcal{S}(y) dr$$
  
= 
$$\int_{\mathbb{R}_+} g(z, r) \Phi_{\lambda_m}(r) dr.$$

July 19, 2010

Reconstruction of a function over a 2000000, from 97000 mesurements :



Reconstruction of a function over a 2000000. from 97000 mesurements :

• Helmholtz equation,  $\mathcal{O}(n^3 \log(n))$  :



Reconstruction of a function over a 2000000 , from 97000 mesurements :



• Helmholtz equation,  $\mathcal{O}(n^3 \log(n))$  :  $\longrightarrow 7$  seconds,



Reconstruction of a function over a 2000000 , from 97000 mesurements :



• Helmholtz equation,  $\mathcal{O}(n^3 \log(n))$  :  $\longrightarrow 7$  seconds,

• Exact inversion,  $\mathcal{O}(n^5)$  :



Reconstruction of a function over a 2000000, from 97000 mesurements :



• Helmholtz equation,  $\mathcal{O}(n^3 \log(n))$  :  $\rightarrow$  7 seconds,

• Exact inversion,  $\mathcal{O}(n^5)$  :  $\rightarrow$  7 hours.

# TABLE OF CONTENTS

- 1 The ThermoAcoustic Tomography
  - Experimental set-up
  - Equations
  - Inverse problem for point detectors
  - Inverse problem for lineic detectors
  - Some inversion formulas
    - The filtered backprojection
    - Fourier-Bessel series expansion
    - Helmholtz equation
- 8 VARIATIONAL APPROACH
  - Fourier regularization
  - Regularization scheme
    - Regularizing data
    - Asymptotic behaviour of  $\mathcal{P}_{\beta}$

## 1 Illustrations

(IMT)

JULY 19, 2010

# Plan

- 1 The ThermoAcoustic Tomography
  - Experimental set-up
  - Equations
  - Inverse problem for point detectors
  - Inverse problem for lineic detectors
  - Some inversion formulas
    - The filtered backprojection
    - Fourier-Bessel series expansion
    - Helmholtz equation
- 8 VARIATIONAL APPROACH
  - Fourier regularization
  - Regularization scheme
    - Regularizing data
    - Asymptotic behaviour of  $\mathcal{P}_{\beta}$



(IMT)

# Plan

- 1 The ThermoAcoustic Tomography
  - Experimental set-up
  - Equations
  - Inverse problem for point detectors
  - Inverse problem for lineic detectors
  - Some inversion formulas
    - The filtered backprojection
    - Fourier-Bessel series expansion
    - Helmholtz equation
- ③ VARIATIONAL APPROACH
  - Fourier regularization
  - Regularization scheme
    - Regularizing data
    - Asymptotic behaviour of  $\mathcal{P}_{\beta}$



(IMT)

# REGULARIZATION SCHEME

Assuming we want to solve Rf = g, and that  $g \approx Rf_0$  with  $f_0 \in L^2(B)$ :

- Step 1: Define the object to be reconstructed as  $\phi_{\beta} * f_0$ , where  $(\phi_{\beta})_{\beta>0}$  is an approximation of unity.
- Step 2 Replace the original data g by regularized data:  $\Phi_{\beta}g$ .
- **Step 3** Finally, define the *reconstructed object* as the solution of the following optimization problem:

$$(\mathcal{P}_{\beta}) \quad \left| \begin{array}{c} \mathsf{Minimize} \quad \frac{1}{2} \| \Phi_{\beta} g - Rf \|_{L^{2}(S \times \mathbb{R}_{+})}^{2} + \frac{\alpha}{2} \| (1 - \hat{\phi}_{\beta}) \hat{f} \|_{L^{2}(\mathbb{R}^{d})}^{2} \\ \text{s.t.} \quad f \in L^{2}(B), \end{array} \right|$$

# REGULARIZATION SCHEME

Assuming we want to solve Rf = g, and that  $g \approx Rf_0$  with  $f_0 \in L^2(B)$ :

- Step 1: Define the object to be reconstructed as  $\phi_{\beta} * f_0$ , where  $(\phi_{\beta})_{\beta>0}$  is an approximation of unity.
- Step 2 Replace the original data g by regularized data:  $\Phi_{\beta}g$ .
- **Step 3** Finally, define the *reconstructed object* as the solution of the following optimization problem:

$$(\mathcal{P}_{\beta}) \quad \left| \begin{array}{c} \mathsf{Minimize} \quad \frac{1}{2} \| \Phi_{\beta} g - Rf \|_{L^{2}(S \times \mathbb{R}_{+})}^{2} + \frac{\alpha}{2} \| (1 - \hat{\phi}_{\beta}) \hat{f} \|_{L^{2}(\mathbb{R}^{d})}^{2} \\ \text{s.t.} \quad f \in L^{2}(B), \end{array} \right|$$

 $\longrightarrow$  Here  $\beta$  is the relevant regularization parameter.

# DEFINITION OF A REGULARIZATION OPERATOR

# $\begin{array}{cccc} C_{\beta} \colon \ L^{2}(\mathbb{R}^{d}) & \longrightarrow & L^{2}(\mathbb{R}^{d}) \\ f & \longmapsto & f * \phi_{\beta} \end{array}$

(IMT)

THE TAT INVERSE PROBLEM

JULY 19, 2010

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

2010 41 / 50

DEFINITION OF A REGULARIZATION OPERATOR

We investigate  $\Phi_{\beta} \in L(L^2(S imes \mathbb{R}_+))$  such that:

$$\Phi_{\beta}R = RC_{\beta}.$$

If R is one-to-one, one gets easily:

$$\Phi_{\beta} = RC_{\beta}R^{\dagger}.$$

(IMT)

JULY 19, 2010

41 / 50

DEFINITION OF A REGULARIZATION OPERATOR

We investigate  $\Phi_{\beta} \in L(L^2(S \times \mathbb{R}_+))$  such that:

$$\Phi_{\beta}R = RC_{\beta}.$$

If R is one-to-one, one gets easily:

$$\Phi_{eta} = RC_{eta}R^{\dagger}.$$

If not, we can define  $\Phi_{eta}$  as some solution of...
# PROBLEM $\mathcal{Q}_{\beta}$

$$(\mathcal{Q}_eta) egin{array}{c|c} {\sf Minimize} & rac{1}{2} \|RC_eta-XR\|^2 \ {
m s.t.} & X \in L(L^2(S imes {
m R}_+)), \ X=0 \ {
m on} \ {
m ran} \ R^\perp. \end{array}$$

- This is a convex problem;
- R is compact  $\Rightarrow$  level sets are not bounded.

< 🗇 🕨

< ≣⇒

э

# PROBLEM $\mathcal{Q}_{\beta}$

$$(\mathcal{Q}_eta) egin{array}{c|c} {\sf Minimize} & rac{1}{2} \|RC_eta - XR\|^2 \ {
m s.t.} & X \in L(L^2(S imes {
m R}_+)), \ X=0 \ {
m on} \ {
m ran} \ R^\perp. \end{array}$$

- This is a convex problem;
- R is compact  $\Rightarrow$  level sets are not bounded.

Nevertheless, we have

### PROPOSITION

If  $RC_{\beta}R^{\dagger}$  is in  $L(\mathcal{D}(R^{\dagger}), L^{2}(S \times \mathbb{R}_{+}))$ , then  $RC_{\beta}R^{\dagger}$  is the restriction of some bounded operator defined on  $L^{2}(S \times \mathbb{R}_{+})$  and solution of  $(\mathcal{Q}_{\beta})$ . When R is injective, this solution is unique.

# Problem $\mathcal{Q}_{\beta}$ in action

$$(\mathcal{Q}_{\beta}) \quad \left| \begin{array}{c} \mathsf{Minimize} \quad \frac{1}{2} \|RC_{\beta} - XR\|^{2} \\ \mathsf{s.t.} \quad X \in L(L^{2}(S \times \mathbb{R}_{+})), \ X = 0 \ \mathsf{on} \ \mathsf{ran} \ R^{\perp}. \end{array} \right.$$

The computation of a solution could be achieve thanks to a *proximal point algorithm*.

 $\longrightarrow$  This noise-free problem would be well posed.

 $\hookrightarrow$  But  $\mathcal{Q}_{\beta}$  is extremely huge !!

# $\mathcal{Q}_{\beta}$ in finite dimension

# $F = \mathbb{R}^n$ and $G = \mathbb{R}^m$ , m < n in $\mathbb{N}$ $R \in \mathcal{M}_{m imes n}$ and $\Phi_{\beta} \in \mathcal{M}_{m}$



◆□ → ◆□ → ◆目 → ◆目 → ● ● ● ● ●

# $\mathcal{Q}_{eta}$ in finite dimension

$$(\mathcal{Q}_{eta}) egin{array}{c} \mathsf{Minimize} & \mathcal{J}(RC_{eta}-XR) \ ext{ s.t. } & X \in \mathcal{M}_m, \ X=0 ext{ on } \operatorname{ran} R^{\perp}. \end{cases}$$

### DEFINITION

The convex functional  $\mathcal{J}$  is said to be  $O(m) \times O(n)$ -invariant iff  $\forall (U_m, U_n) \in O(m) \times O(n), \ \mathcal{J}(U_m X U_n^t) = \mathcal{J}(X)$ 

(IMT)

# $\mathcal{Q}_{eta}$ in finite dimension

$$(\mathcal{Q}_{eta}) egin{array}{c} \mathsf{Minimize} & \mathcal{J}(RC_{eta}-XR) \ ext{ s.t. } & X \in \mathcal{M}_m, \ X=0 ext{ on } \mathrm{ran} \ R^{\perp}. \end{cases}$$

## DEFINITION

The convex functional  $\mathcal{J}$  is said to be  $O(m) \times O(n)$ -invariant iff  $\forall (U_m, U_n) \in O(m) \times O(n), \ \mathcal{J}(U_m X U_n^t) = \mathcal{J}(X)$ 

#### PROPOSITION

If  $\mathcal{J}$  is  $O(m) \times O(n)$ -invariant, then  $RC_{\beta}R^{\dagger}$  is solution of Problem  $\mathcal{Q}_{\beta}$ .

(IMT)

THE TAT INVERSE PROBLEM

JULY 19, 2010

A 3 3

44 / 50

### Remember...

## THEOREM (MARÉCHAL et al)

I. Let  $\alpha > 0$  and  $\beta > 0$  fixed. Then Problem  $(\mathcal{P}_{\beta})$  is well posed.

## II. Assume

- $\hat{\phi}(\xi) \neq 1, \, \forall \xi \in \mathbb{R}^d \setminus \{0\};$
- $\exists K, s > 0$ ,  $|1 \hat{\phi}(\xi)| \sim_{\xi \to 0} K \|\xi\|^s;$

• 
$$g \in \mathcal{D}(T_W^{\dagger})$$
 et  $\tilde{g} = UT_W^{\dagger}g \in H^s(\mathbb{R}^d).$ 

Than  $f_{\beta}$  converge in the strong sense to  $T_{W}^{\dagger}g$  , in  $L^{2}(B)$ , as  $\beta \downarrow 0$ .

### Remember...

## THEOREM (MARÉCHAL et al)

I. Let  $\alpha > 0$  and  $\beta > 0$  fixed. Then Problem  $(\mathcal{P}_{\beta})$  is well posed.

## II. Assume

- $\hat{\phi}(\xi) \neq 1, \, \forall \xi \in \mathbb{R}^d \setminus \{0\};$
- $\exists K, s > 0$ ,  $|1 \hat{\phi}(\xi)| \sim_{\xi \to 0} K \|\xi\|^s$ ;
- $g \in \mathcal{D}(\mathcal{T}_W^{\dagger})$  et  $\tilde{g} = U\mathcal{T}_W^{\dagger}g \in H^s(\mathbb{R}^d)$ .

Than  $f_{\beta}$  converge in the strong sense to  $T_{W}^{\dagger}g$ , in  $L^{2}(B)$ , as  $\beta \downarrow 0$ .

### Remember...

- THEOREM (MARÉCHAL et al)
  - I. Let  $\alpha > 0$  and  $\beta > 0$  fixed. Then Problem  $(\mathcal{P}_{\beta})$  is well posed.
  - II. Assume
    - $\hat{\phi}(\xi) 
      eq 1, \, \forall \xi \in \mathbb{R}^d \setminus \{0\};$
    - $\exists K, s > 0$ ,  $|1 \hat{\phi}(\xi)| \sim_{\xi \to 0} K \|\xi\|^s$ ;
    - $g \in \mathcal{D}(R^{\dagger})$  et  $R^{\dagger}g \in H^{s}(B).$

Than  $f_{\beta}$  converge in the strong sense to  $R^{\dagger}g$ , in  $L^{2}(B)$ , as  $\beta \downarrow 0$ .

- $\hat{\phi}(\xi) \neq 1, \, \forall \xi \in \mathbb{R}^d \setminus \{0\};$
- $\exists K, s > 0$ ,  $|1 \hat{\phi}(\xi)| \sim_{\xi \to 0} K ||\xi||^s$ ;
- $g\in \mathcal{D}(R^{\dagger})$  and  $R^+g\in H^s(B).$



< 注 → 注

• 
$$\hat{\phi}(\xi) \neq 1, \, \forall \xi \in \mathbb{R}^d \setminus \{0\};$$

• 
$$\exists K, s > 0$$
,  $|1 - \hat{\phi}(\xi)| \sim_{\xi \to 0} K \|\xi\|^s$ ;

• 
$$g\in \mathcal{D}(R^{\dagger})$$
 and  $R^+g\in H^s(B).$ 

 $\Phi_{eta}$  solution of

$$\mathcal{Q}_{\beta} \quad \left| \begin{array}{c} \text{Minimize} \quad \frac{1}{2} \| RC_{\beta} - XR \|_{L(H^{s}(B), L^{2}(S \times \mathbb{R}_{+}))}^{2} \\ \text{s.c.} \quad X \in L(G), \ X = 0 \text{ on } \operatorname{ran} R^{\perp}, \end{array} \right.$$

◆□> ◆□> ◆目> ◆目> ●目 ●のへで

#### Lemma

When  $\beta$  goes down to zero,  $C_{\beta}$  converges to the identity and  $\Phi_{\beta}$  converges the identity on ran R. In other words :

$$\|\Phi_{\beta}R-R\|_{L(H^{s}(B),L^{2}(S\times\mathbb{R}_{+}))}\xrightarrow[\beta\rightarrow 0]{} 0.$$

(IMT)

$$(\mathcal{P}_{\beta}) \quad \left| \begin{array}{c} \text{Minimize} \quad \frac{1}{2} \| \Phi_{\beta} g - Rf \|_{L^{2}(S \times \mathbb{R}_{+})}^{2} + \frac{\alpha}{2} \| (1 - \hat{\phi}_{\beta}) \hat{f} \|_{L^{2}(\mathbb{R}^{d})}^{2} \\ \text{s.c.} \quad f \in L^{2}(B), \end{array} \right.$$



$$(\mathcal{P}_{\beta}) \quad \left| \begin{array}{c} \text{Minimize} \quad \frac{1}{2} \| \Phi_{\beta} g - Rf \|_{L^{2}(S \times \mathbb{R}_{+})}^{2} + \frac{\alpha}{2} \| (1 - \hat{\phi}_{\beta}) \hat{f} \|_{L^{2}(\mathbb{R}^{d})}^{2} \\ \text{s.c.} \quad f \in L^{2}(B), \end{array} \right.$$

$$\downarrow \beta \rightarrow 0$$

$$(\mathcal{P}) \quad \left| \begin{array}{c} \mathsf{Minimize} \quad \frac{1}{2} \|RR^{\dagger}g - Rf\|_{L^{2}(S \times \mathbb{R}_{+})}^{2} \\ \mathsf{s.c.} \quad f \in L^{2}(B), \end{array} \right|$$

$$(\mathcal{P}_{\beta}) \quad \left| \begin{array}{c} \text{Minimize} \quad \frac{1}{2} \| \Phi_{\beta} g - Rf \|_{L^{2}(S \times \mathbb{R}_{+})}^{2} + \frac{\alpha}{2} \| (1 - \hat{\phi}_{\beta}) \hat{f} \|_{L^{2}(\mathbb{R}^{d})}^{2} \\ \text{s.c.} \quad f \in L^{2}(B), \end{array} \right.$$

$$\downarrow \beta \to 0$$

$$(\mathcal{P}) \quad \left| \begin{array}{c} \mathsf{Minimize} \quad \frac{1}{2} \| \mathbf{R} \mathbf{R}^{\dagger} \mathbf{g} - \mathbf{R} f \|_{L^{2}(S \times \mathbb{R}_{+})}^{2} \\ \text{s.c.} \quad f \in L^{2}(B), \end{array} \right.$$

JULY 19, 2010 46 / 50

$$(\mathcal{P}_{\beta}) \quad \left| \begin{array}{c} \text{Minimize} \quad \frac{1}{2} \| \Phi_{\beta} g - Rf \|_{L^{2}(S \times \mathbb{R}_{+})}^{2} + \frac{\alpha}{2} \| (1 - \hat{\phi}_{\beta}) \hat{f} \|_{L^{2}(\mathbb{R}^{d})}^{2} \\ \text{s.c.} \quad f \in L^{2}(B), \end{array} \right.$$

$$\downarrow \beta \to 0$$

$$(\mathcal{P}) \quad \left| \begin{array}{c} \mathsf{Minimize} \quad \frac{1}{2} \|g - Rf\|_{L^2(S \times \mathbb{R}_+)}^2 \\ \mathsf{s.c.} \quad f \in L^2(B), \end{array} \right|$$

# TABLE OF CONTENTS

## 1 The ThermoAcoustic Tomography

- Experimental set-up
- Equations
- Inverse problem for point detectors
- Inverse problem for lineic detectors
- Some inversion formulas
  - The filtered backprojection
  - Fourier-Bessel series expansion
  - Helmholtz equation
- 3 VARIATIONAL APPROACH
  - Fourier regularization
  - Regularization scheme
    - Regularizing data
    - Asymptotic behaviour of  $\mathcal{P}_{\beta}$

## ILLUSTRATIONS

(IMT)

# Taking $\beta$ as a regularization parameter





THE TAT INVERSE PROBLEM

JULY 19, 2010

48 / 50











# How do we compute $RCR^{\dagger}g$

We compute  $R^{\dagger}g$  by means of a least square procedure :



(日) 日

# How do we compute $RCR^{\dagger}g$

We compute  $R^{\dagger}g$  by means of a least square procedure :



# How do we compute $RCR^{\dagger}g$

We compute  $R^{\dagger}g$  by means of a least square procedure :



...and we apply *RC* to this nasty result.

## THANK YOU



THE TAT INVERSE PROBLEM

▶ < ≣ > < ≣ > July 19, 2010 50 / 50